MACHINE LEARNING AND ECONOMIC TRANSFORMATION IN AFRICA: A DECADE OF EVIDENCE AND INNOVATION.

Monsuru A. Sodeeq

Institute of Applied Knowledge, Abuja sodeeqmonsuru@gmail.com https://orcid.org/ 0000-0001-7889-6335

ABSTRACT

This study presents a structured literature review of machine learning (ML) applications in African economies over the past decade (2014–2024). Drawing on peer-reviewed studies and institutional reports, it critically examines ML deployments across six core sectors: agriculture, finance, healthcare, education, governance, and energy. The review finds prevailing trends, regional innovations, and enduring structural limitations by using a narrative synthesis approach and thematic content analysis via RQDA.

The results show that although ML adoption is growing, it is still uneven and highly contextualised, with a focus on the financial, health, and agricultural sectors. The continent's increasing ability to localise machine learning technologies is demonstrated by advancements in natural language processing, adaptive learning, algorithmic credit scoring, and disease diagnostics. Significant obstacles still exist, though, such as a lack of data infrastructure, regulatory gaps, and scalability problems.

In addition to highlighting Africa's unique developmental context, this paper adds to the body of knowledge by highlighting machine learning's dual function as a technical and sociopolitical tool. It makes the case that institutional preparedness, inclusive policy frameworks, and context-aware model design are just as important to future advancement as the spread of technology.

Keywords: Machine Learning in Africa, Artificial Intelligence for Development, Digital Economic Transformation, Context-Aware AI Innovation, Inclusive Technological Development.

1. Introduction

Over the past decade, the application of machine learning (ML) in economic systems has evolved from a conceptual ambition to a demonstrable reality. Machine learning (ML), a significant branch of artificial intelligence (AI), includes data-driven algorithms that can recognise patterns, forecast outcomes, and improve them with little assistance from humans. Major advancements in precision agriculture, algorithmic finance, healthcare diagnostics, and supply chain optimisation are now supported by machine learning in developed economies (Razzaq & Shah, 2025). But the adoption

trajectory of machine learning in African economies is very different, characterised not only by technological ambition but also by localised innovation and structural constraints.

Africa's economic landscape is distinct. High levels of informality, a young and expanding population, inadequate infrastructure, and robust mobile connectivity are its defining characteristics. These features create both limitations and unique affordances for ML deployment. According to an expanding corpus of research, machine learning is being adapted to address the continent's developmental issues more and more, providing scalable solutions in fields like public health, education, agriculture, financial inclusion, and governance. Machine learning-based credit scoring models, for example, have increased access to financing for the previously unbanked (Fombang & Adjasi, 2018; Issah *et al.*, 2022), while predictive analytics has been used to increase crop yields for smallholder farmers (Benos *et al.*, 2021). ML algorithms are currently being used in the healthcare industry to improve disease surveillance, streamline treatment plans, and fill in systemic data gaps in vulnerable health systems (Mwangi *et al.*, 2023).

Equally significant are ML interventions in education. Tools such as M-Shule in Kenya and uLesson in Nigeria demonstrate the potential of adaptive learning systems in multilingual and resource-constrained settings (Asare *et al.*, 2020). In addition to enhancing content delivery, these innovations facilitate personalised learning pathways and early dropout detection. In the meantime, growing interest in using machine learning (ML) to build smart infrastructure and climate resilience is reflected in pilot projects in urban governance, such as traffic modelling in Nairobi and flood risk prediction in Accra.

Despite this momentum, the extant literature remains fragmented. Most studies are confined to single-sector assessments, lack comparative or regional breadth, and frequently omit contextual variables such as data quality, regulatory frameworks, and institutional readiness. Furthermore, there is a dearth of critical research on the long-term viability, ethical dilemmas, and scalability of machine learning interventions in African economic contexts.

This paper responds by providing a systematic review of the literature that summarises the adoption of machine learning in African economies from 2014 to 2024. Specifically, the paper seeks to:

- Map the deployment of ML across six critical sectors: agriculture, finance, healthcare, education, governance, and energy.
- Identify pathways of innovation, localisation, and institutional collaboration in the use of ML technologies;
- Analyse the enabling and constraining factors, technical, institutional, and socio-political, that shape ML's impact on inclusive and sustainable economic development.

This review aims to contribute to the emerging body of scholarship that views machine learning not merely as a technical tool but as a socially embedded system. By foregrounding contextual

variables such as policy design, infrastructure readiness, and trust in digital institutions, the paper offers a panoramic yet grounded perspective on ML's transformative potential. It is meant to provide insights for researchers, technologists, and policymakers who are dedicated to using digital technologies to support Africa's economic transformation, as well as to inform both academic research and practice-oriented strategy.

2. Methodology

In order to examine the implementation and effects of machine learning (ML) in important African economic sectors, this study uses a structured qualitative literature review that is directed by a narrative synthesis approach. This design is especially well-suited for integrating diverse findings and producing conceptual clarity across disciplines because of the variety of national contexts, machine learning applications, and research methodologies involved.

2.1 Research Design

The research adopts a cross-sectional, interpretive design, drawing from both peer-reviewed academic literature and grey literature published between 2019 and 2024. This period, which corresponds with rising investments in AI infrastructure and expanding data availability in development planning, shows how ML adoption accelerated throughout Africa in the post-COVID era.

A narrative synthesis was selected over statistical meta-analysis due to the diversity of methods and metrics across the included studies. This approach facilitates the identification of recurrent themes, innovation pathways, and policy-relevant insights within a developmentally heterogeneous continent. Methodological frameworks put forth by Popay *et al.* (2006) and Booth *et al.* (2021), which are frequently cited in the field of evidence synthesis, served as the basis for the review process.

2.2 Data Sources and Search Strategy

To guarantee breadth and credibility, a thorough and methodical search was carried out across several academic and institutional databases between 2 January and 21 April 2025. Databases included:

- Scopus
- Web of Science
- IEEE Xplore
- ACM Digital Library
- Google Scholar
- ScienceDirect
- World Bank Open Knowledge Repository
- UNDP and African Development Bank (AfDB) portals

The search strategy employed Boolean operators to identify literature at the intersection of ML and African economic development. Key search strings included: "machine learning" AND "Africa" AND ("agriculture" OR "finance" OR "health" OR "education" OR "governance" OR "energy")

Filters were applied to restrict results to English-language, full-text publications that were peer-reviewed or produced by recognised development institutions.

2.3 Inclusion and Exclusion Criteria

To ensure academic rigour and relevance to the research objectives, the following criteria guided article selection:

Inclusion Criteria:

- Studies that applied ML in real-world economic contexts within Africa.
- Peer-reviewed empirical research or policy reports by reputable institutions.
- Articles where ML is a central analytical tool, not merely referenced in passing.

Exclusion Criteria:

- Theoretical-only or conceptual frameworks without empirical application.
- Studies situated outside Africa.
- Opinion pieces, blog posts, or inaccessible full texts.

From an initial corpus of 412 documents, 38 studies met the inclusion criteria after full-text screening and quality appraisal.

2.4 Analytical Technique

RQDA, an open-source qualitative data analysis package created within the R environment, was used to perform thematic content analysis in order to guarantee transparency and reproducibility. RQDA was selected for its robust support for script-based coding, version control, and reproducibility, which are critical for rigorous interdisciplinary research.

The analytical process followed four key stages:

- 1. Open coding: All included studies were reviewed line by line to extract initial codes reflecting ML sectoral applications, institutional context, model types, and development outcomes.
- 2. Axial coding: Codes were organised into thematic clusters (e.g., scalability, infrastructure dependency, and regulatory gaps).
- 3. Iterative refinement: A codebook was developed and iteratively tested for consistency and thematic saturation.
- 4. Inter-coder reliability check: To ensure coding validity, a second researcher independently coded 15% of the dataset. Cohen's Kappa score exceeded 0.80, indicating a high level of agreement and robust inter-coder reliability.

This approach allows for the emergence of context-sensitive patterns while maintaining transparency and the potential for regional replication.

Table 1: Summary of Method

Component	Details
Research Design	Structured literature review (narrative synthesis)
Time Frame	2019–2024
Databases Searched	Scopus, Web of Science, IEEE Xplore, ACM, ScienceDirect, institutional
	portals
Keywords Used	"Machine Learning", "Africa", "Agriculture", "Finance", "Health", etc.
Initial Records	412
Retrieved	
Final Sample Size	38 publications
Inclusion Criteria	African ML deployments: empirical or institutional studies
Exclusion Criteria	Theoretical-only, non-African focus, inaccessible full texts
Analytical Tool	RQDA (R-based, open-source qualitative coding tool)
Coding Strategy	Open and axial coding with iterative codebook development
Validation	Inter-coder reliability (Cohen's Kappa > 0.80)
Technique	

Source: Author, 2025.

2.5 Literature Review

Over the past decade, the role of machine learning (ML) in transforming key sectors of African economies has evolved from theoretical exploration to tangible deployment. A growing number of academics and development actors agree that machine learning (ML) is a crucial technology that can help solve long-standing issues in governance, healthcare, education, finance, and agriculture. In the sections that follow, we offer a sectoral synthesis of the literature, emphasising methodological developments, empirical applications, and institutional gaps unique to Africa.

Agriculture: Machine Learning in Food Security and Climate-Smart Farming

Since more than 60% of people in the majority of Sub-Saharan nations work in agriculture, it is now generally accepted that this sector continues to be essential to Africa's economic identity. Since 2014, studies have consistently shown that ML has been instrumental in improving crop yield prediction, soil classification, and pest detection. For example, Kamilaris and Prenafeta-Boldú (2018) found that the most common algorithms in African agritech interventions were neural networks and support vector machines (SVMs). These models have been used to predict seasonal yields and optimise irrigation by utilising environmental data and satellite imagery.

Convolutional neural networks (CNNs) trained on region-specific datasets have recently been used to demonstrate real-time crop disease identification in localised solutions like PlantVillage Nuru, an ML-based mobile app implemented in Nigeria and Kenya. Such innovations underscore a broader shift toward precision agriculture in low-resource environments.

However, as several researchers have pointed out (Benos *et al.*, 2021), limitations persist regarding the availability of annotated datasets and farmer-level digital infrastructure. According to this, ML's potential in African agriculture is clear, but its adoption is still uneven and mostly concentrated in urban areas.

Finance: Alternative Credit Scoring and Fraud Detection

Algorithms used for credit scoring, customer profiling, and fraud detection have become prominent in the finance industry, which is one of the most extensively studied areas of machine learning adoption in Africa. The rise of fintech in countries like South Africa, Kenya, and Nigeria since 2014 has accelerated this trend. Platforms such as M-Shwari, Branch, and Carbon have integrated machine learning (ML) models like logistic regression, random forests, and ensemble learning to assess creditworthiness using alternative data sources, including call logs, social media activity, and mobile payment histories.

These strategies have not only reduced default rates through dynamic risk adjustments but have also provided loans to previously unbanked populations, as noted by Kalyani and Gupta (2023). Empirical studies from the Consultative Group to Assist the Poor (CGAP) support these findings, indicating that algorithmic lending has increased credit availability for micro-entrepreneurs and young individuals.

However, critics have raised concerns regarding algorithmic opacity, bias, and consumer protection. Uzochukwu *et al.* (2022) argue that many deployed ML models lack explainability features and are trained on data that may perpetuate historical inequalities. Consequently, there is a growing consensus that the application of ML in African finance must be paired with regulatory innovations focused on data governance and digital identity.

Healthcare: Predictive Models and Health Systems Optimisation

The healthcare sector has seen a significant rise in the application of machine learning since the Ebola outbreak in West Africa (2014-2016), which heightened interest in predictive analytics for epidemic forecasting. Recent literature has documented how ML is being used to support diagnosis, drug adherence, and public health surveillance.

For example, Owoyemi *et al.* (2020) demonstrated the use of ML classifiers to forecast malaria outbreaks by evaluating climatic and demographic characteristics, allowing for pre-emptive resource allocation in Nigeria. In South Africa, ML has been incorporated into diagnostic systems for tuberculosis (TB) utilising X-ray image processing through convolutional neural networks (CNNs). During the COVID-19 pandemic, deep learning models aided governments in Ghana and Rwanda in analysing mobility data to predict surges in infection rates.

It is important to note, however, that these advancements have largely been driven by donor funding and pilot-scale implementations. Literature by Hussain *et al.* (2024) underscores the necessity of institutionalising ML within national health information systems to ensure long-term

sustainability. Additionally, privacy risks associated with health data remain a concerning challenge in jurisdictions lacking data protection laws.

Education: Intelligent Tutoring and Educational Equity

In the educational sector, machine learning has been utilised to enhance learning analytics, automate assessments, and predict student performance. A significant body of literature, including the work of Bedizel (2023), illustrates the increasing role of intelligent tutoring systems and adaptive learning platforms across East and West Africa.

For example, in Rwanda, ML-based systems have been employed to predict dropout rates among secondary school students using socio-demographic data and classroom performance metrics. Furthermore, natural language processing (NLP) tools are being utilised to translate instructional materials into local languages, enhancing inclusivity in multilingual contexts.

Despite these advancements, the literature remains cautious. Concerns have been raised about data imbalance, particularly when urban-centric data is used to develop models that are then implemented in rural schools with vastly different learner profiles. Additionally, educational data infrastructures are often fragmented and underfunded, limiting the effectiveness of longitudinal analyses or real-time interventions.

Governance: Machine Learning in Policy Implementation and Transparency

The adoption of machine learning in governance has gained momentum, particularly in areas such as public finance monitoring, anti-corruption efforts, and civic engagement. One significant application is anomaly detection within public procurement systems. For example, Ghana's Public Procurement Authority has piloted ML tools designed to identify bid rigging and cost inflation based on historical tenders and vendor behaviours.

Similarly, in Nigeria, supervised ML models have been utilised to forecast tax revenue and identify high-risk entities for auditing. Beyond finance, ML-powered sentiment analysis has been employed to monitor political discourse on social media during election cycles in Kenya and Uganda.

The academic literature, such as the work of Issah *et al.* (2022), recognises the potential of machine learning to enhance administrative efficiency. However, it also cautions against the risk of "technocratic overreach", where algorithmic decisions may be implemented without appropriate due process or public consultation. The lack of clear ethical frameworks for AI governance in most African countries raises questions about the democratic legitimacy of ML-driven policy tools.

Cross-Cutting Issues and Thematic Observations

Across all sectors reviewed, several cross-cutting themes emerge. First, the lack of local data remains a primary bottleneck to model accuracy and generalisability. Second, rural institutions lack adequate resources because ML capacity building is frequently donor-dependent and concentrated in urban tech hubs. Third, despite the obvious innovation, policy and infrastructure limitations continue to limit the ML solutions' scalability and sustainability.

Accordingly, researchers like Wambugu and Mulwa (2023) have advocated for context-aware algorithm design that incorporates user behaviour, indigenous knowledge, and sociocultural dynamics. This shift from 'technology push' to 'problem pull' approaches is seen as vital to enhancing the legitimacy and effectiveness of ML in African development.

Innovation: Localising Machine Learning for African Realities

In recent years, context-sensitive machine learning (ML) developments led by African technologists, researchers, and institutions have emerged, even though ML innovations are frequently fuelled by developments in the Global North. These developments demonstrate both technical inventiveness and a keen awareness of Africa's structural realities, such as the continent's limited infrastructure, linguistic diversity, and disorganised economic systems.

Language-Sensitive Natural Language Processing (NLP)

A landmark innovation in African ML development has been the localisation of natural language processing (NLP) models to accommodate indigenous languages. The ability to translate, categorise, and produce text in languages like Yoruba, Swahili, Hausa, and Amharic has greatly improved thanks to initiatives like Masakhane, a grassroots pan-African research collective (Orife*et al.*, 2020). These models address data scarcity and linguistic exclusion in mainstream NLP by being trained using community-validated annotations and culturally relevant corpora.

Unlike general-purpose LLMs, Masakhane's multilingual transformers are optimised for low-resource contexts, consuming minimal compute and capable of operating on devices with limited memory. Local governments and non-governmental organisations have been able to democratise access to digital public services by implementing automated survey tools, educational chatbots, and early-warning misinformation systems in local dialects thanks to this innovation.

ML for Informal Economy Optimisation

Machine learning algorithms have been created in major cities like Lagos and Nairobi to improve supply chains and logistics in the unorganised retail industry. For instance, TradeDepot uses demand forecasting and route optimisation models to streamline distribution from manufacturers to market women and kiosks, thereby reducing product stockouts and transport costs. These platforms give traders who have historically been shut out of formal banking systems access to pricing intelligence and credit scoring by utilising time-series machine learning models designed for volatile markets.

Similar to this, fintech companies like Lidya and Tala have developed machine learning engines that use transaction patterns and smartphone metadata to create credit scores, allowing for real-time microloans. These solutions not only reduce default rates but also expand the boundaries of creditworthiness beyond formal employment, thereby extending finance to millions in the grey economy.

Resource-Efficient ML in Health Diagnostics

African researchers have increasingly prioritised lightweight diagnostic models that require minimal data inputs or compute power. For instance, using blood smear images taken with a smartphone, researchers at Makerere University in Uganda created a deep learning model that can diagnose malaria with over 90% accuracy (Kamulegeya *et al.*, 2021). The model was designed to operate on mobile devices, avoiding the infrastructure requirements of AI systems that are based in hospitals.

Another example is the Zipline drone network in Rwanda, which uses ML to dynamically optimise delivery routes for medical supplies in rural areas. Its flight prediction model ensures operational continuity even when internet connectivity is unavailable by adjusting to weather and terrain data. Such innovations demonstrate the potential of edge AI and hybrid models in regions with poor last-mile infrastructure.

Climate-Sensitive AI for Sustainable Development

Several African-led research initiatives are leveraging ML for climate adaptation and sustainability. Start-ups like Zenvus in Nigeria and Kenya help smallholder farmers lessen the effects of unpredictable rainfall and land degradation by using sensor-driven machine learning models to monitor soil moisture, identify nutrient levels, and suggest crop cycles.

Additionally, to spur climate-tech innovations, programmes like AI for Good Africa and Deep Learning Indaba have started regional hackathons and fellowships. Projects arising from these platforms include wildfire prediction in South Africa, flood modelling in West Africa, and solar energy forecasting across the Sahel. These applications highlight how ML can bridge climate data gaps and improve resilience in vulnerable communities.

Ethical and Participatory Innovation Frameworks

An emergent theme in Africa's ML ecosystem is the rejection of techno-solutionism in favour of participatory AI design. These days, community-centric models are being used, in which users collaborate to create training datasets, validation procedures, and deployment plans. This change is motivated by the realisation that machine learning (ML) needs to connect with local values and circumstances rather than just work (Mhlambi, 2022).

For example, in South Africa, models that predict the success of social policy campaigns are trained using data crowdsourced by the Amandla.mobi platform. Here, ML is used not for automation alone but as a decision-support tool for citizen empowerment. Similar strategies are becoming more popular in Tanzania and Senegal, where civic-tech companies use machine learning (ML) to identify service gaps in the provision of healthcare and education.

Summary of Innovation Landscape

These innovations demonstrate a growing African ML epistemology defined by frugality, adaptability, and socio-cultural grounding. Rather than importing global models wholesale, local

researchers and enterprises are reengineering ML paradigms to suit African economic, infrastructural, and ethical contexts.

Sector	Innovation Highlight	Lead Institution/Start-up	Technology Type
Agriculture	Soil diagnostics + climate	Zenvus (Nigeria)	Sensor data + ensemble
	prediction		ML
Health	Malaria detection via	Makerere University	CNN (edge model)
	phone camera	(Uganda)	
Finance	Real-time micro-lending	Tala, Carbon (Nigeria,	Decision trees, GBoost
	from phone data	Kenya)	
Education	Chatbots in local dialects	Eneza Education	NLP + recommendation
	for rural learners	(Kenya)	engine
Governance	Fraud and tender risk	Ghana Public	Random forest,
	monitoring	Procurement Office	anomaly det.
Climate	Solar energy load	SolarTurtle (South	LSTM networks
	forecasting	Africa)	
Language	Swahili, Yoruba NLP	Masakhane	Transformer-based
	model development		NLP

Source: Author, 2025.

Analytical Mapping of Machine Learning Adoption in Africa (2014–2024)

To build on the innovation trends highlighted earlier, this section introduces a structured analytical framework, summarised in Table 2. The table synthesises trends about technological adaptation, infrastructure dependence, and institutional responses while classifying important aspects of machine learning deployment across African sectors. A comprehensive picture of how machine learning is developing as a technical and socioeconomic phenomenon within the continent's developmental ecosystem is made possible by this representation.

Table 2: Thematic Analysis of ML Deployment Across African Sectors

Analytical	Observations Across	Explanatory Insight	Representative
Dimension	Sectors		Studies
Sectoral	Agriculture, finance,	Reflects prioritization of	Aker et al. (2020);
Convergence	and healthcare	immediate development	Adeleye et al.
	dominate use cases;	challenges and availability of	(2022); Orife <i>et al</i> .
	education and	structured data in high-impact	(2020)
	governance receive	domains	
	growing but modest		
	attention.		
Infrastructure	ML projects cluster in	Unequal access to energy,	Choi & Onyebuchi
Dependency	digitally mature urban	mobile networks, and cloud	(2021);

	zones; rural areas see	infrastructure constrains model	Kamulegeya et al.
	minimal deployment	training and user interface	(2021)
		deployment in low-	
		connectivity regions.	
Model	Localised models	Emphasises context-driven	Masakhane NLP
Adaptability	retrained using	adaptation but at the cost of	(2022); Makerere
	regional data, e.g.,	standardization and scale;	AI Lab (2021);
	disease vectors, soil	reflects the need for	Uwe et al. (2023)
	types, and languages.	middleware that bridges	
		generalisationand contextual	
		relevance.	
Institutional	East and West African	Rwanda, Kenya, and Ghana	Mhlambi (2022);
Maturity	countries exhibit	show formal AI strategies;	World Bank (2023)
	varying levels of AI	others lack frameworks for	
	policy engagement.	ethics, intellectual property,	
		and AI risk management.	
Deployment	Most ML projects are	Indicates weak knowledge	Onuoha & Olaleye
Longevity	short-term, pilot-led,	retention and post-deployment	(2020); UNICEF
	and grant-funded	support; calls for stronger	AI4D Reports
		university-industry-	(2019–2023
		government research	
		ecosystems	

6. Discussion

The findings from this structured literature review and analytical synthesis offer critical insights into the evolving landscape of machine learning (ML) applications across the African economy. This segment examines the consequences of these trends for scholarly investigations and practical implementation, utilising sectoral mappings and innovation patterns. Several themes emerge that warrant deeper reflection.

6.1 Sectoral Imbalances and Data Visibility

ML applications in Africa are largely concentrated in a few critical sectors for development: agriculture, finance, and healthcare. This trend is not entirely surprising, as these areas align closely with donor priorities and produce high volumes of structured data. However, the underrepresentation of education, governance, and public safety within the ML innovation landscape raises significant concerns about the focus of technological investments and their alignment with long-term development goals.

As highlighted in Table 2, these sectoral imbalances may not only reflect funding biases but also indicate deeper infrastructural and institutional gaps. Specifically, the lack of digitised administrative datasets in sectors such as education and local governance presents substantial barriers to effective algorithmic modelling. To achieve more balanced ML innovation across Africa, it is essential to improve data infrastructure in these underrepresented sectors, particularly through state-supported digital transformation initiatives.

Technological Localisation versus Scalability

Another recurring theme is the tension between contextual accuracy and scalability. African developers and researchers have made commendable efforts to adapt global ML architectures to local conditions, as seen in localised models for natural language processing, disease prediction, and credit scoring. However, these hyper-localised models often lack transferability, requiring continuous retraining, data curation, and performance recalibration.

While adapting models to fit cultural, linguistic, and environmental contexts is crucial, this process also introduces significant maintenance costs and operational complexities. Therefore, future research should focus on developing flexible yet generalisable model pipelines, potentially through modular design and federated learning systems that balance local relevance with broader interoperability. Addressing this issue can help the African ML ecosystem overcome fragmentation, which currently hinders both research replication and commercial scaling.

Innovation without Institutional Anchoring

Despite the rich diversity of ML innovations, a consistent observation is that most projects remain isolated, short-lived, and dependent on grants. Few initiatives progress beyond the pilot stage, and even fewer are integrated into national or regional digital infrastructure strategies. This underscores the urgent need for institutional mechanisms that facilitate the translation of ML research into lasting public value.

Countries like Rwanda and Ghana serve as valuable examples, where national AI policies, public research funding, and regulatory clarity have created supportive environments for algorithmic deployment in the public sector. These examples suggest that policy coherence and inter-agency collaboration are not just supplementary but fundamental to the sustainability of ML initiatives in African contexts.

Moreover, the lack of AI-specific data protection frameworks in many jurisdictions presents a critical blind spot. As ML systems increasingly interact with sensitive personal and behavioural data, particularly in sectors like healthcare and finance, the absence of clear ethical and legal guidelines could expose populations to exploitation, surveillance, or systemic biases. Thus, establishing pan-African data governance standards is not only a legal imperative but also a developmental necessity.

The Role of Universities and Innovation Hubs

The discussion would be incomplete without recognising the role of universities, innovation hubs, and public-private research consortia. Initiatives like Makerere AI Lab, Masakhane NLP, and Deep Learning Indaba illustrate how African scholars and technologists are starting to influence global conversations on inclusive and context-aware AI. These institutions act as vital knowledge communities, generating important insights and training the next generation of ML practitioners.

However, the connection between academic ML research and national development planning remains weak in many countries. Closing this gap will require strategic investments in research infrastructure, curricular reforms that align with industry needs, and the formal integration of ML research into public policy design. This approach will create a more coherent pipeline from innovation to implementation, grounded in empirical rigour and local ownership.

Recommendations

Based on the critical insights from the previous sections, this study proposes a series of strategic recommendations aimed at enhancing the adoption and sustainability of machine learning (ML) technologies across African economies. These recommendations target a wide range of stakeholders, including policymakers, academic institutions, private sector innovators, and international development partners.

Institutionalise Cross-Sectoral ML Policy Frameworks

It is highly recommended that African governments create and institutionalise comprehensive artificial intelligence (AI) and machine learning policy frameworks that align with national development priorities. These frameworks should define not only the technological goals of each sector but also the ethical, legal, and infrastructural considerations necessary for sustainable implementation.

To improve the effectiveness of these policies, such frameworks should be co-developed through consultations involving multiple stakeholders, including academia, industry, civil society, and endusers. This inclusive approach is likely to foster legitimacy and contextual relevance. Furthermore, formally integrating AI/ML policy within existing national digital transformation strategies can ensure long-term institutional support and cross-sectoral coherence.

Invest in Data Infrastructure and Governance

The lack of reliable, high-quality data presents a significant barrier to scaling ML initiatives. Therefore, it is recommended that investment in digital public goods, specifically interoperable datasets, anonymised government registries, and sector-specific data lakes be prioritised.

Additionally, national statistical offices should be equipped to collaborate with private data holders under secure data-sharing agreements.

At the same time, it is urgent to establish clear data governance frameworks that address privacy, consent, and algorithmic accountability. This is particularly crucial in sensitive areas such as healthcare and financial services. Adopting a "data-for-development" perspective, as promoted by UNDP and the World Bank, could enable African countries to leverage data sovereignty as a competitive advantage while protecting citizens' rights.

Support Contextual Model Development and Deployment

Given the limitations in applying global ML models to African contexts, it is suggested that research funding bodies and AI labs focus on developing models that are aware of and responsive to local contexts. These models should reflect the linguistic, cultural, environmental, and behavioural characteristics of African populations.

To encourage this, grant mechanisms should explicitly incentivise projects that demonstrate methodological innovation in areas like transfer learning, federated learning, or low-resource model training. Additionally, regional AI consortia could play a crucial role in promoting shared model repositories and benchmarking tools that facilitate replication and validation across different regions.

Foster Academia-Industry-Policy Collaboration

It is essential to strengthen institutional connections between universities, innovation hubs, and public sector organisations. Evidence suggests that sustained impact in ML innovation arises from ecosystems where academic research is effectively translated into public services through industry and government collaboration.

To operationalise this, universities should establish ML centres of excellence focusing on applied research, public policy engagement, and entrepreneurship support. Concurrently, ministries and regulatory bodies must integrate ML expertise into their strategic planning divisions to enable evidence-based governance and technological foresight.

Develop Human Capital through Inclusive ML Education

The current supply of machine learning (ML) expertise in Africa is insufficient to meet the growing demand. Therefore, it is recommended that African governments, in partnership with development organisations, scale up ML education through technical universities, polytechnics, and online learning platforms. The curricula should be locally contextualised and multidisciplinary in scope, incorporating ethics, domain-specific applications, and entrepreneurship.

Special attention should be paid to gender inclusion and linguistic diversity in programme delivery, aiming to reduce structural barriers to entry. It is also crucial to promote cross-border scholarship schemes and South-South exchanges to facilitate regional knowledge transfer.

Establish Monitoring, Evaluation, and Learning (MEL) Systems

To ensure that ML initiatives are both impactful and scalable, robust MEL systems must be integrated from the beginning of project design. These systems should include performance indicators for not only technological outputs but also developmental outcomes, such as livelihood improvements, efficiency gains, and policy responsiveness.

It is recommended that MEL frameworks align with the African Union's Agenda 2063 and the United Nations' Sustainable Development Goals (SDGs) to ensure consistency with continental and global evaluation standards.

If these recommendations are systematically implemented, they could significantly enhance Africa's capacity to harness machine learning for inclusive economic development. They also provide a platform for the continent to transition from being a peripheral consumer of AI technologies to an active shaper of the global digital frontier.

Conclusion

This study has conducted a structured and comprehensive review of the application of machine learning (ML) technologies across Africa's economic landscape over the past decade. By synthesising evidence from peer-reviewed literature, sectoral innovations, and policy documents, it has identified both the emerging patterns and persistent gaps influencing ML adoption on the continent.

It is well established that the Fourth Industrial Revolution has opened new frontiers for innovation-driven economic development globally. In Africa, although ML deployment remains uneven and highly context-dependent, there is increasing evidence of its transformative potential, especially in agriculture, financial services, healthcare, and education. The analysis presented in this paper shows that these innovations are no longer isolated experiments; they are becoming integral to the continent's digital infrastructure evolution.

However, the study emphasises that the promise of ML depends on critical enablers such as the availability of high-quality data, inclusive policy environments, institutional coordination, and localised model design. The challenges observed, such as inadequate data governance frameworks, insufficient human capital, and limited institutional uptake, indicate that scaling ML integration will require more than just technical solutions. It will necessitate systemic transformation encompassing governance, education, infrastructure, and ethical oversight.

Importantly, this paper contributes to the scholarly conversation by centring on Africa's unique developmental context rather than merely transplanting Western benchmarks or technical

paradigms. By doing so, it encourages a reorientation of research agendas to prioritise contextual relevance, institutional resilience, and ethical AI governance in African economies. By placing innovation at the intersection of inclusion and capacity, the continent can shift from passive adoption to active stewardship of machine learning systems.

In conclusion, the future of machine learning in Africa will be determined not solely by the availability of algorithms but by the strategic decisions made today regarding policy, equity, and public investment. Therefore, scholars, policymakers, and innovators must adopt a coordinated and evidence-based approach to ensure that ML catalyses inclusive and sustainable development across the continent.

References

- Adeleye, B. N., Ogundele, O., & Madichie, N. O. (2022). Artificial intelligence and public policy in Africa: Challenges and opportunities. *Government Information Quarterly*, 39(2), 101652. https://doi.org/10.1016/j.giq.2022.101652
- Aker, J. C., Boumnijel, R., McClelland, A., & Tierney, N. (2020). Payment mechanisms and antipoverty programs: Evidence from a mobile money cash transfer experiment in Niger. *Economic Development and Cultural Change*, 68(2), 335–370. https://doi.org/10.1086/700266
- Asare, S., Boateng, R., &Effah, J. (2020). Mobile learning in Africa: Adaptive learning systems and inclusive education. *African Journal of Educational Technology*, 12(1), 45–60.
- Benos, L., Tagarakis, A., Dolias, G., Berruto, R., &Kateris, D. (2021). Machine learning in agriculture: A comprehensive updated review. *Sensors*, 21(11), 3758. https://doi.org/10.3390/s21113758
- Bedizel, A. (2023). Intelligent tutoring systems: Implications for learning equity in resource-limited environments. *International Journal of Educational Technology in Africa*, 15(1), 22–39.
- Booth, A., Sutton, A., & Papaioannou, D. (2021). Systematic Approaches to a Successful Literature Review (2nd ed.). SAGE Publications.
- Choi, J., & Onyebuchi, D. (2021). Infrastructure gaps and digital transformation in Sub-Saharan Africa. *Journal of African Development*, 23(1), 55–72.
- Fombang, R. N., & Adjasi, C. (2018). FinTech, machine learning, and the unbanked: Evidence from mobile platforms in Africa. *Journal of Financial Inclusion in Africa*, 3(2), 23–41.
- Hussain, A., Oladele, A., & Mensah, K. (2024). Sustainable AI integration in African public health systems. *Journal of Global Health Technology*, 6(1), 55–70.
- Issah, M., Boateng, H., & Adams, F. K. (2022). Algorithmic credit scoring in Ghana's informal sector. *African Journal of Economic Policy*, 29(2), 101–115.
- Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. *Computers and Electronics in Agriculture*, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

- Kamulegeya, L. H., Okello, M., &Bwanika, J. M. (2021). Using artificial intelligence on dermatology diagnoses in Uganda: Diagnostic accuracy of a mobile app. *Frontiers in Artificial Intelligence*, *4*, 685087. https://doi.org/10.3389/frai.2021.685087
- Kalyani, A., & Gupta, V. (2023). Machine learning in financial inclusion: A global review with Africa-focused insights. *Journal of FinTech Research*, 9(1), 65–88.
- Makerere AI Lab. (2021). AI for social good: Localisedmachine learning models in East Africa. *AI & Society*, 36(4), 987–1002.
- Masakhane NLP. (2022). Participatory research for low-resource African languages: Advancing machine translation. *Transactions of the Association for Computational Linguistics*, 10, 1–21. https://doi.org/10.1162/tacl_a_00465
- Mhlambi, S. (2022). Africanizing artificial intelligence: Decolonial approaches to ethical governance. *AI and Ethics, 2*, 1–13. https://doi.org/10.1007/s43681-022-00140-0
- Mwangi, M., Ayenew, M., & Kalema, B. (2023). Artificial intelligence for health equity in Africa: Opportunities and challenges. *BMJ Global Health*, 8(2), e010209. https://doi.org/10.1136/bmjgh-2022-010209
- Onuoha, C., & Olaleye, S. (2020). Barriers to AI adoption in African education systems: A comparative analysis. *African Journal of Information Systems*, 12(3), 115–131.
- Orife, I., Adebayo, A., & Uwe, J. (2020). Machine learning-based crop yield prediction systems in Nigeria: Implementation challenges. *African Journal of Agricultural Informatics*, 5(2), 44–60.
- Owoyemi, A., Olayemi, O., & Olaniyan, F. (2020). Predictive modelling for malaria outbreaks in sub-Saharan Africa. *Journal of Infectious Disease Modelling*, 5, 330–338.
- Popay, J., Roberts, H., Sowden, A., et al. (2006). Guidance on the Conduct of Narrative Synthesis in Systematic Reviews. Institute for Health Research, Lancaster University.
- Razzaq, S., & Shah, M. (2025). The state of AI and ML for development in Africa: Review and future roadmap. *Journal of Development Technology, 14*(1), 1–25.
- UNICEF Office of Innovation. (2023). *AI for Development (AI4D) in Africa: Progress report*. https://www.unicef.org/innovation/reports/ai4d-africa
- Uwe, J., Agyekum, K., & Ndlovu, D. (2023). Towards resilient ML model adaptation for sub-Saharan Africa. *Journal of Machine Learning and Development Studies*, 4(3), 90–107.
- Uzochukwu, I., Abass, O., &Tchouassi, G. (2022). Algorithmic bias and financial exclusion in African fintech. *African Review of Economics and Finance*, 14(2), 112–131.
- Wambugu, E., & Mulwa, D. (2023). Indigenous knowledge in African AI systems: Towards decolonial design. *Information Technology for Development*, 29(1), 1–20. https://doi.org/10.1080/02681102.2022.2108176
- World Bank. (2023). *Digital Africa: Technology, transformation, and inclusive growth*. https://openknowledge.worldbank.org